# Amazon Bedrock、Amazon Auroraを 組み合わせたRAGで 回答精度の向上に取り組んでみた!

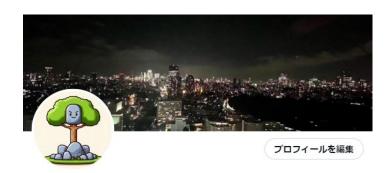
セゾン情報システムズ 石原直樹

# 自己紹介

- 普段の業務
  - グループ企業のCCoE
  - 社内LLM研究会にも所属
- 好きなAWSサービス
  - Amazon Bedrock
- トピック
  - 来週AWS MLS受験します!



#### 2023 Japan AWS Jr. Champions



#### 石原直樹

@Ishihara\_Naok1

2023 Japan AWS Jr. Champions 発言は所属する組織を代表するものではありません。

● 東京 目黒区 ② qiita.com/Naoki\_Ishihara■ 2023年11月からTwitterを利用しています

112 フォロー中 90 フォロワー

#### @Ishihara\_Naok1 X最近始めました!

# 宣伝!



https://minorun365.connpass.com/event/309029/

お助けメンバーとして皆さんを全力でサポートします!興味ある方是非ご応募ください!

## 今日話す内容

- AWSにおけるRAG実装方法3選
- ↑のうち1つの回答精度向上手法
- ●実際に精度向上したか評価(3つのRAG回答と比較)
- ●今回の検証で苦戦したこと

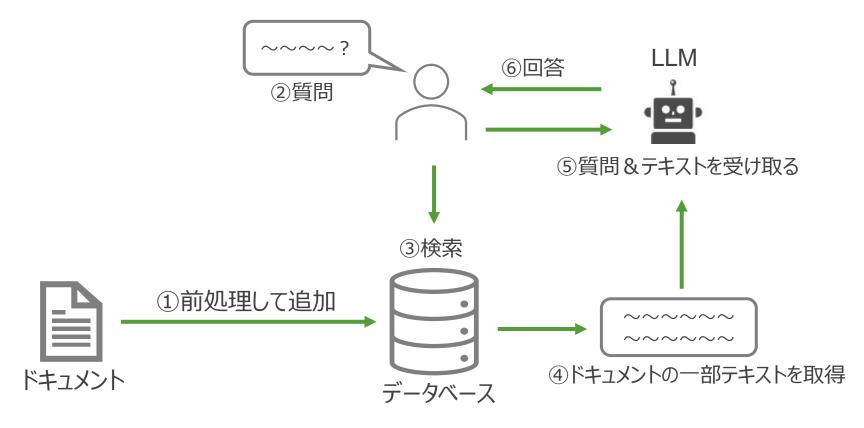
## お気軽に質問ください!

# はじめに

## RAGとは

・LLMが外部のDBから情報を取得し回答を生成する仕組み

用途例:社内ナレッジに関する質問に回答できるAIチャットボット



RAG回答生成までの流れ

## AWS上でRAGを実装する方法3選

※ AWSが提供している全文検索エンジン

※ 2023.11.29 一般利用開始

| RAGでの実装<br>アプローチ | 1. Bedrock & Kendra <sup>*</sup> | 2. Knowledge Base for<br>Amazon Bedrock                                | 3. Bedrock & ベクター<br>DB      |
|------------------|----------------------------------|------------------------------------------------------------------------|------------------------------|
| RAGのフロー処理        | 要開発                              | AWSマネージドで提供<br>= 開発不要                                                  | 要開発                          |
| ドキュメントの前処理       | AWSマネージドで提供<br>= 開発不要            | AWSマネージドで提供<br>= 開発不要                                                  | 要開発                          |
| 検索処理             | AWSマネージドで提供<br>= 開発不要            | AWSマネージドで提供<br>= 開発不要                                                  | 要開発                          |
| DBの選択肢           | Kendra                           | OpenSearch Serveless Aurora PostgreSQL Pinecone Redis Enterprise Cloud | OpenSearch Service/Serveless |

※ Amazon Q For Business Useは省略しています

## AWS上でRAGを実装する方法3選

※ AWSが提供している全文検索エンジン ※ 2023.11.29 一般利用開始

| RAGでの実装<br>アプローチ | 1. Bedrock & Kendra <sup>*</sup> | 2. Knowledge Base for<br>Amazon Bedrock                                | 3. Bedrock & ベクター<br>DB                                                                                                                                |
|------------------|----------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| RAGのフロー処理        | 要開発                              | AWSマネージドで提供<br>= 開発不要                                                  | 要開発                                                                                                                                                    |
| ドキュメントの前処理       | AWSマネージドで提供<br>= 開発不要            | AWSマネージドで提供<br>= 開発不要                                                  | 要開発                                                                                                                                                    |
| 検索処理             | AWSマネージドで提供<br>= 開発不要            | AWSマネージドで提供<br>= 開発不要                                                  | 要開発                                                                                                                                                    |
| DBの選択肢           | Kendra                           | OpenSearch Serveless Aurora PostgreSQL Pinecone Redis Enterprise Cloud | OpenSearch Service/Serveless<br>Document DB<br>MemoryDB for Redis<br>Aurora/RDS PostgreSQL<br>Pinecone<br>Redis Enterprise Cloud<br>その他 3rd Party SaaS |

それぞれの処理をカスタム実装することで**精度の向上**に挑戦 最小コストが低く※管理がしやすいAurora Servelessを選択

<sup>※</sup> Aurora Serverless v2 0.5 ACU \$43.8/月 OpenSearch Serveless 2 OCU \$350.4/月 Kendra Developer Edition \$810/月

### 補足:ベクターDBを用いたRAGの処理

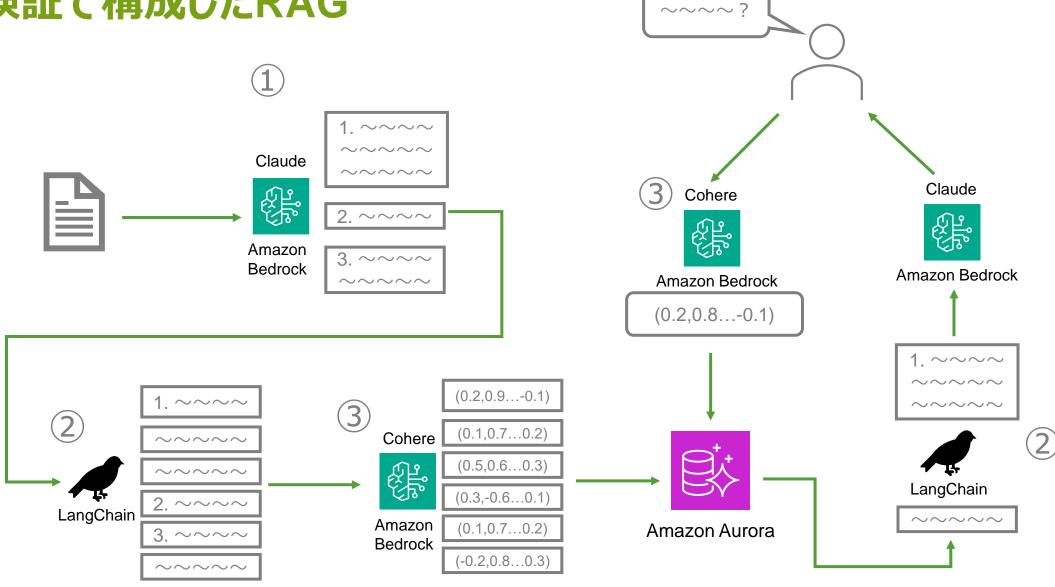
| RAGでの実装<br>アプローチ | Knowledge Base for<br>Amazon Bedrock        | Bedrock &<br>Vector DB                    | ~~~?                                    |
|------------------|---------------------------------------------|-------------------------------------------|-----------------------------------------|
| チャンク分割処理         | 10~1000トークンで設定した <b>固定サイ</b><br>ズ or チャンクなし | 要開発                                       |                                         |
| 検索処理             | ベクトル検索でチャンクを検索・取得                           | 要開発                                       |                                         |
| 埋め込みモデル          | Amazon Titan Embeddings                     | 要開発                                       | ①質問のベクトル化 LLM                           |
|                  |                                             | ヤンクをベクトル化<br>(0.2,0.90.1)<br>(0.1,0.70.2) | ②ベクトル検索<br>~~~~~~<br>~~~~~~<br>③チャンクを取得 |
|                  | ドキュメントの前久                                   |                                           | ベクターDB <b>検索処理</b>                      |

# 今回検証した精度向上手法

## 検証した精度向上手法3つ

- ① Claudeによるチャンク分割
- ② LangChainの高度な検索機能
- ③ 高性能な埋め込みモデル

## 検証で構成したRAG

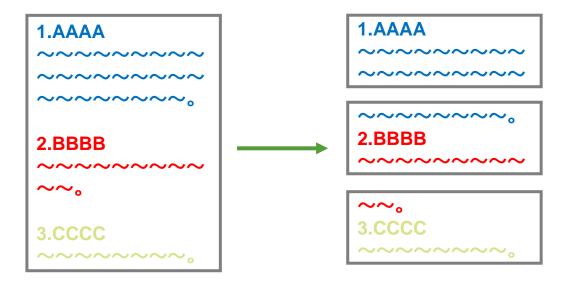


#### ① Claudeによるチャンク分割 $\sim \sim \sim \sim$ ? 1. ~~~~ Claude Claude Cohere Amazon **Bedrock** Amazon Bedrock Amazon Bedrock (0.2, 0.8...-0.1) $1 \sim \sim \sim \sim$ (0.2, 0.9...-0.1) $1 \sim \sim \sim \sim$ (0.1, 0.7...0.2)Cohere (0.5, 0.6...0.3)LangChain (0.3, -0.6...0.1)LangChain Amazon (0.1, 0.7...0.2)Amazon Aurora Bedrock

### チャンク分割による回答精度への影響

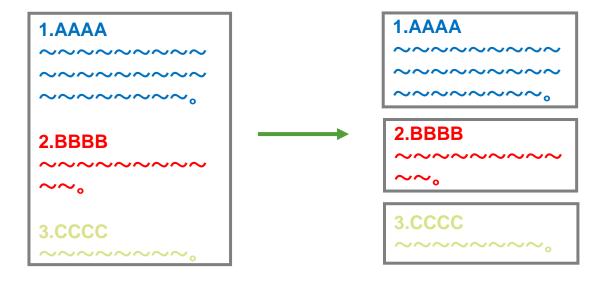
※例: Knowledge base bedrockでのチャンク分割

・固定サイズでのチャンク分割※



- 1チャンクに異なるセクションの内容が含まれる
  - ➤ LLMに**不要な**情報や**断片的**な情報を渡す
    - 回答精度が悪化

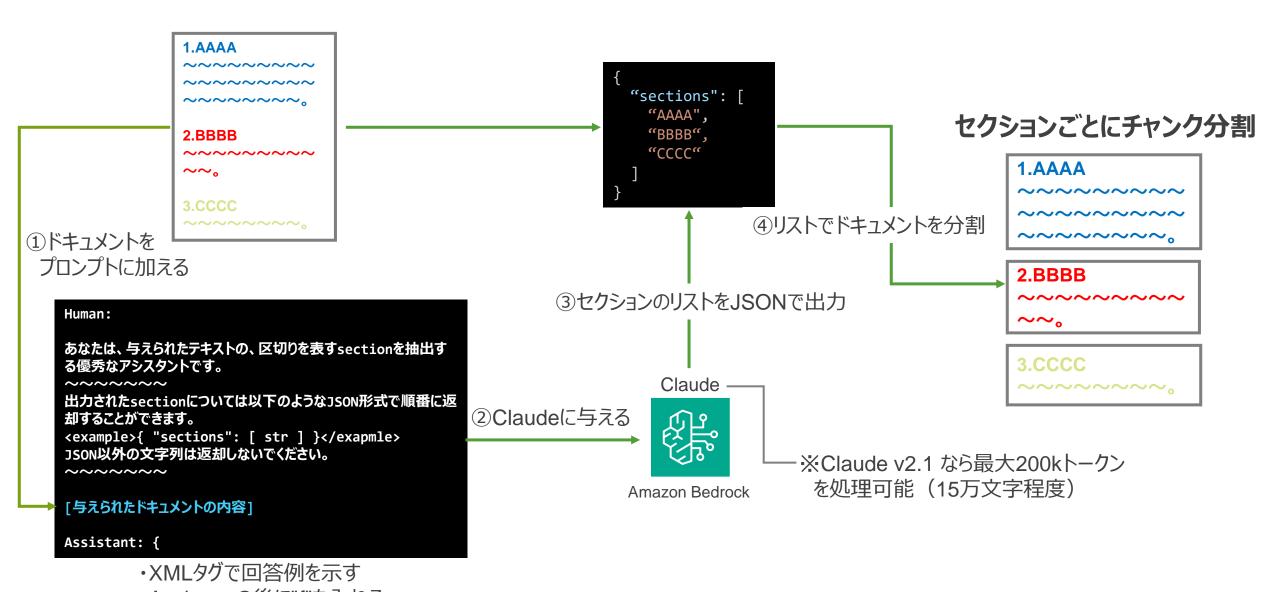
・セクションごとのチャンク分割



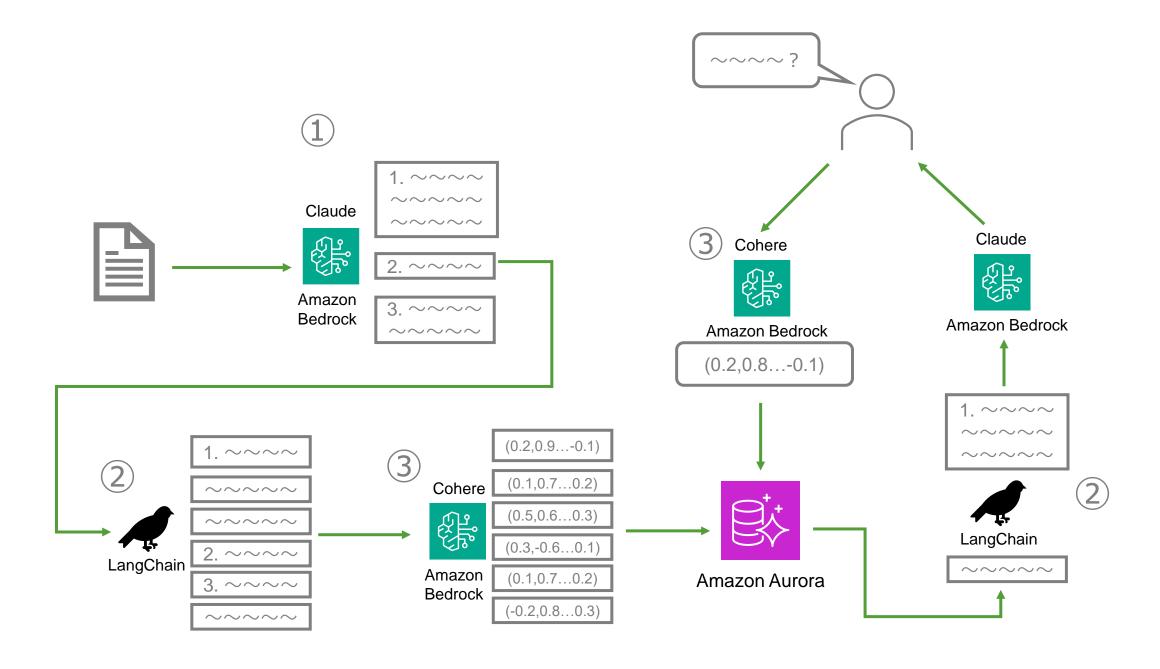
- 1チャンクに1セクションの内容がまとまっている
  - ➤ LLMに**まとまった情報**を渡すことができる
    - 回答精度の向上につながる

可能であればセクション単位で分割したい

### Claudeによるチャンク分割※



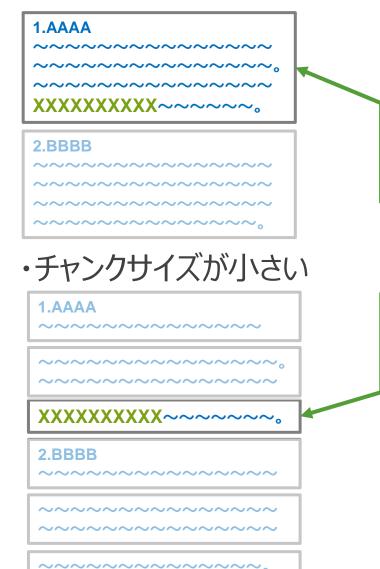
・Assistantの後に"{"を入れる



#### ②LangChainの高度な検索機能 $\sim\sim\sim\sim$ ? $1. \sim \sim \sim \sim$ Claude Claude Cohere $2. \sim \sim \sim \sim$ Amazon Bedrock Amazon Bedrock Amazon Bedrock (0.2, 0.8...-0.1)(0.2, 0.9...-0.1)1. ~~~~ (0.1, 0.7...0.2)Cohere (0.5, 0.6...0.3)LangChain (0.3, -0.6...0.1)LangChain $\sim\sim\sim\sim$ Amazon (0.1, 0.7...0.2)Amazon Aurora Bedrock

### チャンクサイズとベクトル検索の精度

チャンクサイズが大きい



- ・ベクトル (意味) は遠い
- 検索でヒットしにくい
- ·情報は**まとまっている**

- ・ベクトル (意味) は近い
- 検索でヒットしやすい
- ・情報は断片的

質問(クエリ)

XXXXXXXXXXXXX ?

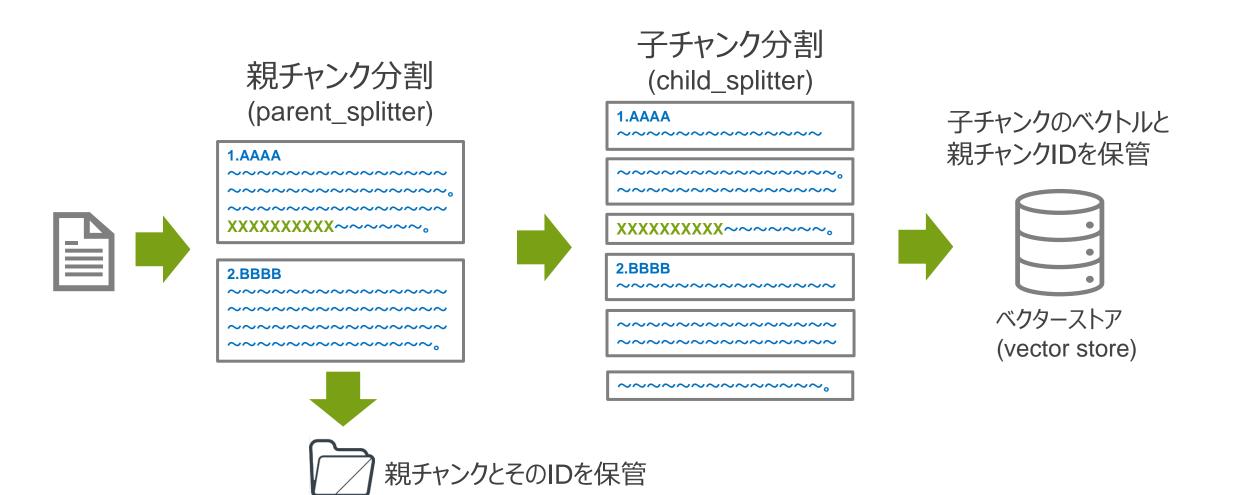
検索対象としてのチャンクは**小さく** LLMに渡すチャンクは**大きく**したい

## **LangChain**\*のParent Document Retrieverを使用

※LLMを使ったアプリケーション開発のOSSフレームワーク

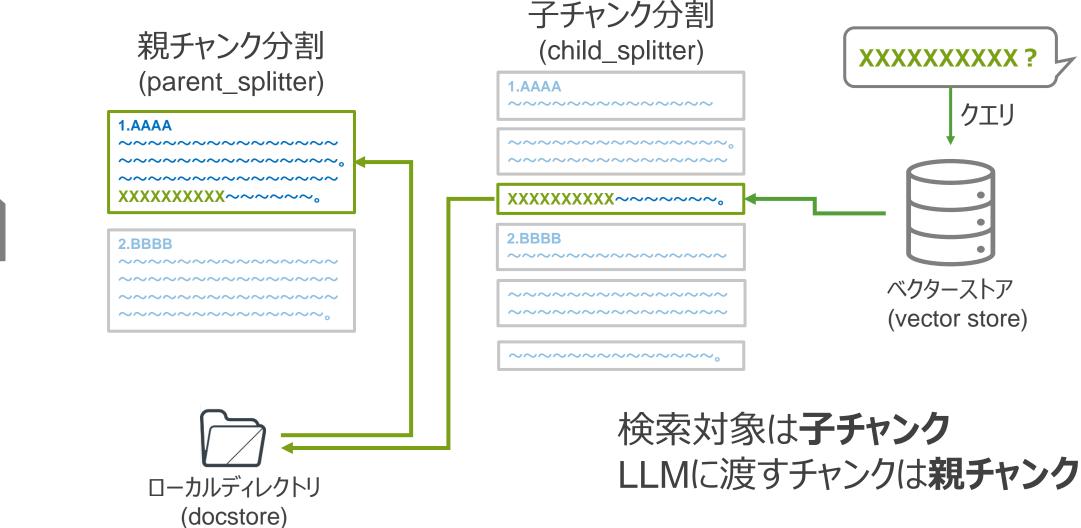
ローカルディレクトリ

(docstore)

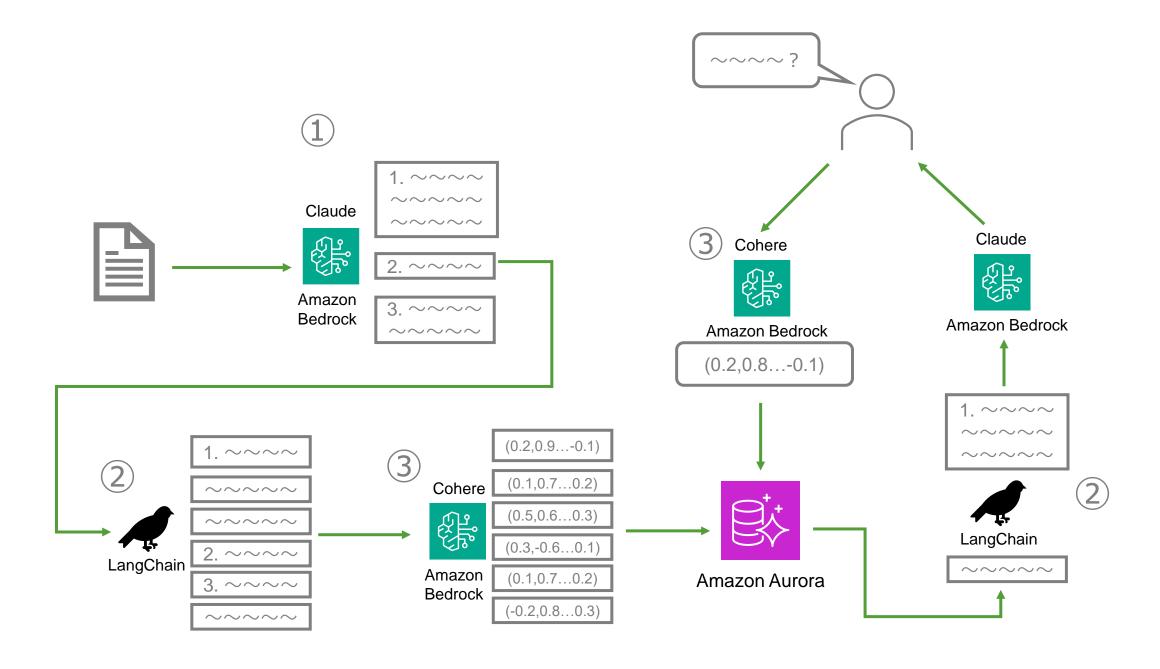


参考: https://python.langchain.com/docs/modules/data\_connection/retrievers/parent\_document\_retriever

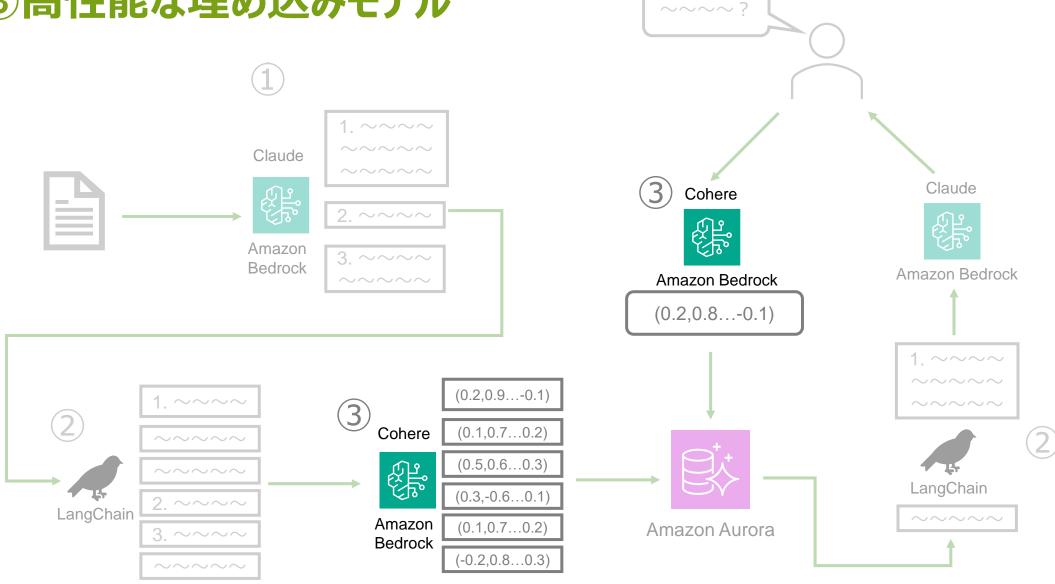
### **LangChainのParent Document Retrieverを使用**







## ③高性能な埋め込みモデル



## 埋め込みモデルにCohere Embed Multilingualを採用

理由:埋め込みモデルのベンチマークMTEBの評価が高い\*\*\*

Cohere Embed Multilingual > text-embedding-ada-002 > Amazon Titan Embeddings

↑Amazon Bedrock 利用可 ↑Azure OpenAl Service利用可 ↑Amazon Bedrock 利用可

特徴:一度に埋め込みできる最大サイズは512トークン(Titanは8192トークン)

➤ Parent Document Retrieverと組み合わせることで、埋め込むチャンクが小さくても、

大きなチャンクをLLMに渡すことができる

- ※「OpenAI の Embeddings API はイケてるのか、定量的に調べてみる [AWS の Embeddings を追加]」 https://qiita.com/akeyhero/items/ce371bfed64399027c23
- ※ Cohereの多言語用の埋め込みモデルを日本語で評価してみる https://hironsan.hatenablog.com/entry/2023/11/06/133504



## 今回検証したRAGの評価について

- databricks社の記事※を参考にアレンジ
  - ▶ 回答の正しさ、包括性、読みやすさを0~3の4段階でGPT-4に評価させる
  - ➤ それぞれに重み付け(正しさ60%、包括性20%、読みやすさ20%)し総合評価点を算出
- 以下条件でそれぞれの回答と比較

| RAGの実装方法 | 1. Bedrock & Kendra | 2. Knowledge Base for<br>Amazon Bedrock | 3. 今回検証したRAG                        |
|----------|---------------------|-----------------------------------------|-------------------------------------|
| チャンクサイズ  | 設定なし                | 300トークン                                 | 親チャンク=セクションごとのチャンク<br>子チャンク=100トークン |
| 検索処理     | 全文検索&セマンティック検索      | ベクトル検索でチャンクを検索・取得                       | Parent Document Retriever           |
| 埋め込みモデル  | 設定なし                | Amazon Titan Embeddings                 | Cohere Embed Multilingual           |
| DB       | Kendra              | Aurora Serveless v2                     | Aurora Serveless v2                 |
| LLM      | Claude v2.1         | Claude v2.1                             | Claude v2.1                         |

## 今回検証したRAGの評価について

- ドキュメントは「Amazon Bedrockユーザーガイドp9~p21」※
- 公式HPのFAQやドキュメントから質問を8つ用意
  - Q1. Amazon Bedrock ではどの モデルが利用できますか?
  - Q2. Amazon Bedrockにおいてプロヴィジョニングされたスループットで利用できるモデルを教えてください。
  - Q3. Amazon Bedrockではどのような機能を利用することが出来ますか?
  - Q4. Amazon Bedrock の使用を開始するにはどうすればよいですか?
  - Q5. Amazon Bedrock Chat Playground とは何ですか?
  - Q6. Amazon Bedrock はどの AWS リージョンで利用できますか?
  - Q7. Amazon Bedrock の料金体系について教えてください
  - Q8. Amazon Bedrockへのアクセス権を付与するにはどのような方法がありますか?

## 結果

#### 8個の質問に対するRAG回答の評価比較

| RAGの実装方法           | 1. Bedrock &<br>Kendra | 2. Knowledge Base for Amazon Bedrock | 3. 今回検証したRAG |
|--------------------|------------------------|--------------------------------------|--------------|
| 総合評価点の平均<br>(3点満点) | 2.68                   | 2.25                                 | 2.98         |

- 今回検証したRAGが最も高い点数となった
- Knowledge Baseはドキュメントと関連しない回答があった
  - 適切なチャンクを取得できていなかった
- Kendraは**包括性が低い**回答が見受けられた
  - ▶ 1ドキュメントに対する最大取得トークンが少ないことが原因?

# 苦戦したこと

### ClaudeからセクションJSONを出力させる処理に大苦戦

- 1. LangChainからBedrockのClaudeを呼び出すとうまくJSONを作ってくれない
  - ➤ boto3を利用
- 2. Claude v2.1だとJSONに加えて文章も出力してしまう
  - ➤ Claude instant v1だと確実にJSONだけを出力してくれる
  - ➤ セクション抽出精度はClaude v2.1の方が優秀
    - ◆ 回答からJSONだけ抜き出す処理を追加
- 3. 「Amazon Bedrockユーザーガイド」のいくつかのページはセクションを抽出できない
  - ➤ ドキュメントに "¥n¥nHuman: ¥n¥nAssistant:" がありClaudeが混乱

# さいごに

## まとめ

- 今回検証した手法でRAGの精度を向上できた
  - ① Claudeによるチャンク分割
  - 2 LangChain@Parent Document Retriever
  - ③ 埋め込みモデルにCohere Embed Multilinguals
- 検証の詳細は後日記事にする予定です
  - ➤ @Ishihara\_Naok1フォローいただけると幸いです!

## 参考資料

- 1. GPTsより精度の高いRAGシステムの構築
  <a href="https://speakerdeck.com/mkazutaka/gptsyorijing-du-nogao-iragsisutemunogou-zhu?slide=30">https://speakerdeck.com/mkazutaka/gptsyorijing-du-nogao-iragsisutemunogou-zhu?slide=30</a>
- 2. BedrockとAurora Serverless PostgreSQL pgvectorでRAGする Amazon Titan Embeddingsでベクトル入門③
  <a href="https://qiita.com/cyberBOSE/items/aaf64c73f4da7e4cdb43">https://qiita.com/cyberBOSE/items/aaf64c73f4da7e4cdb43</a>
- 3. Knowledge Base for Amazon Bedrock のベクターストアとして Aurora PostgreSQL が利用可能に! <a href="https://qiita.com/hayao\_k/items/45e59c1c2a183c27b20d">https://qiita.com/hayao\_k/items/45e59c1c2a183c27b20d</a>
- 4. Amazon BedrockのClaudeとAmazon Kendra、AWS Lambdaを利用し、RAGを実装してみた <a href="https://dev.classmethod.jp/articles/amazon-bedrock-kendra-lambda-rag/">https://dev.classmethod.jp/articles/amazon-bedrock-kendra-lambda-rag/</a>
- 5. 【langchain】retrieveで検索文章とLLMに渡す文章を別にする方法およびretrieveの保存・読込方法の検討 <a href="https://qiita.com/shimajiroxyz/items/facf409b81f59bb68775">https://qiita.com/shimajiroxyz/items/facf409b81f59bb68775</a>

## ご清聴ありがとうございました!