The table contains demographic data on vital events such as marriages, divorces, births, deaths, and stillbirths across different regions of Japan. It provides granular statistics on these events at the prefecture, special ward, and designated city level, along with unique codes that identify each region. The data enables analysis of demographic and social trends across Japan's geographic divisions. Key metrics like birth rates, death rates, marriage rates, and divorce rates can be calculated from the data.
The table contains demographic data for different geographical regions, with each row representing a region and columns capturing information like marriage registrations, live births, stillbirths, and region codes. The value columns seem to be placeholders without clear meaning. Key metrics tracked include marriage registrations, live births, and stillbirths, which can be used to analyze birth rates, mortality, and nuptiality trends across regions.
例えば、
Air Date→ond, Category→ttlc(total caseを元に), Value→vle
のように変更しました。これは少し極端ですが、実際に複数の単語の頭文字を単純に結合してローカル用語を生み出した結果、有識者に聞かないと何のことやらさっぱりなケースは少なくありません。
生成結果の抜粋:クイズデータの概要
The jeopardy_glossary_csv table contains data related to questions, answers, and metadata from the American television game show Jeopardy. The ttlc column provides the category title for each question. ond gives the original air date for the episode. round indicates which round of the game the question is from. The question column contains the text read by the host, while answer has the correct response text. show number gives the episode number, and vle lists the dollar value of each question.
The jeopardy_glossary_csv table contains data related to questions asked on the Jeopardy game show. It includes the category title, original air date, round, question text, answer text, episode number, and dollar value for Jeopardy questions. The category title provides insight into the general topic of the question. The original air date allows tracking of when the question was asked
あらかじめ定義した内容をもとに生成しており、大幅な精度向上が確認できました!!
まとめ
全体を通して
1. DataZoneで組織内のデータをカタログ化して公開できる
2. DataZoneではデータ共有に関する権限を容易に管理できる
3. DataZone AI recommendations で面倒なメタデータ作成を補助